

Gaussian Neighborhood Prime Decomposition of Graphs

K. Sunitha¹, T.Revathi^{2*}

¹Assistant Professor, Department of Mathematics Scott Christian College (Autonomous), Nagercoil, India - 629001. E-mail: <u>ksunithasam@gmail.com</u>

² Research Scholar, Scott Christian College (Autonomous), Nagercoil, India- 629001. Affiliated to Manonmaniam Sundaranar University, Tirunelveli- 627012. E-mail: revathinathan77@gmail.com

Abstract

A decomposition of a graph G is a collection Ψ_{GNP} of edge disjoint subgraphs $H_1, H_2, ..., H_r$ of G such that every edge of G belongs to exactly one H_i . If each H_i is a Gaussian neighborhood prime graphs then ψ_{GNP} is called a Gaussian neighborhood prime decomposition of G. The minimum cardinality of a Gaussian neighborhood prime decomposition of G is called a Gaussian neighborhood prime decomposition number of G and it is denoted by $\pi_{GNP}(G)$. In this paper, we investigate Gaussian neighborhood prime decomposition of helm of fan graph $H_m(F_n)$, helm of wheel graph $H_m(W_n)$, sunflower planar graph SF_n .

Key words: Helm of fan graph, Helm of wheel graph, Sunflower planar graph, Neighborhood and Decomposition.

Subject Classification: 05C78

1. Introduction

Gaussian prime labeling was introduced by Steven Klee et al [10]. In 2018, the concept of Gaussian neighborhood prime labeling was introduced by Rajesh Kumar and Mathew Varkey with respect to spiral order[5]. The Gaussian integers are 1, 1+i, 2+i, 2, 3, 3+i, 3+2i, 2+2i, 1+2i, 1+3i, 2+3i, 3+3i, 4+3i, 4+2i, 4+i, 4, 5, 5+i,.... In this sequel, we

investigate Gaussian neighborhood prime decomposition of helm of fan graph $H_m(F_n)$, helm of wheel graph $H_m(W_n)$, sunflower planar graph SF_n .

Definition 1.1 Let G = (V(G), E(G)) be a graph with *n* vertices. A bijective function $\phi^+ : V(G) \rightarrow \{\gamma_1, \gamma_2, \gamma_3, ..., \gamma_n\}$ is called Gaussian neighborhood prime labeling, if the Gaussian integers in the set for every vertex $v \in V(G)$ with deg (v) > 1, gcd $\{\phi^+(u) : u \in N(v)\} = 1$. A graph which admits Gaussian neighborhood prime labeling is called a Gaussian neighborhood prime graph.

Definition 1.2 A decomposition of a graph G is a collection $\psi_p = \{H_1, H_2, ..., H_r\}$ such that every edge of G belongs to exactly one H_i . If each H_i is a prime graph, then ψ_p is called a prime decomposition of G. The minimum cardinality of a prime decomposition of G is called the prime decomposition number of G and is denoted by $\pi_p(G)$.

Definition 1.3 [4] The helm graph H_n is obtained from a wheel graph W_n by attaching a pendant edge to each vertex of the n cycle.

Definition 1.4 [4] The fan graph F_n is obtained from the path P_n by joining all vertices of P_n to a new vertex called the center. It has n+1 vertices and 2n-1 edges. That is $F_n = P_n + K_1$.

Definition 1.5[3] A wheel graph W_n is obtained by joining a single vertex to all vertices of an n cycle. In other words the wheel W_n is defined to be the join of $C_n + K_1$.

Definition 1.6 [6] A sunflower planar graph SF_n is obtained by a wheel graph having vertices $v_0, v_1, ..., v_m$ (v_0 is essential vertex) whereas $v_1, v_2, ..., v_m$ are rim vertices and other vertices $u_1, u_2, ..., u_m$ such that u_j is joined to v_j and v_{j+1} .

2. Main Results

Theorem 2.1 The decomposition of helm of fan graph $H_m(F_n)$ is Gaussian neighborhood prime for all m, $n \ge 3$.

Proof. Let $H_m(F_n)$ be the helm of fan graph with vertex set

$$V[H_m(F_n)] = \{u_0\} \cup \{u_i, v_i / 1 \le i \le m\} \cup \{w_{ij} / 1 \le i \le m, 1 \le j \le n\} \text{ and edge set}$$

$$E[H_m(F_n)] = \{u_0 u_i / 1 \le i \le m\} \cup \{u_i v_i / 1 \le i \le m\} \cup \{u_i u_{i+1} / 1 \le i \le m-1\} \cup \{u_m u_1\} \cup \{v_i w_{ij} / 1 \le i \le m, 1 \le j \le n\} \cup \{w_{ii} w_{i(j+1)} / 1 \le i \le m, 1 \le j \le n-1\}.$$

Clearly, $|V[H_m(F_n)]| = m(n+2) + 1$ and $|E[H_m(F_n)]| = 2m(n+1)$.

Let
$$\psi_{GNP} = \{H_m, F_n, F_n, \dots, F_n(m \text{ times})\}$$
 be a decomposition of $H_m(F_n)$.

Let m, n be the positive integers and d be the decomposition number.

Let
$$\psi_{GNP} = \begin{cases} (m+n-d-2) F_n \& H_m & \text{if } m \equiv 1 \pmod{2}, n = 3, 4, \dots \& d = 1, 2, 3, \dots \\ (m+n-d-2) F_n \& H_m & \text{if } m \equiv 0 \pmod{2}, n = 3, 4, \dots \& d = 1, 2, 3, \dots \end{cases}$$

The decomposition of helm of fan graph $H_m(F_n)$ contains fan graphs F_n and a helm graph

 H_m . This implies that $\psi_{GNP} \supseteq \{H_m, F_n, F_n, ..., F_n(m \text{ times})\}$

That is $|\psi_{GNP}| \ge |H_m| + |F_n| + |F_n| + ... + |F_n| (m times)$

$$\geq |H_m| + m |F_n|$$

Hence $\pi_{GNP}[H_m(F_n)] \ge m+1$.

We claim that ψ_{GNP} is a Gaussian neighborhood prime decomposition of $H_m(F_n)$. Let *a* be any vertex of F_n and H_m .

Case (i): Let $H_1 = F_n$, $n \ge 3$.

Let $\{v_0, v_1, v_2, \dots, v_n\}$ be the vertices of H_1 .

Define a function $\phi^+: V(H_1) \rightarrow \{\gamma_1, \gamma_2, \gamma_3, ..., \gamma_{n+1}\}$ by

 $\phi^+(v_0) = \gamma_1$

$$\phi^+(v_i) = \gamma_{i+1}, \quad 1 \le i \le n$$

Let $a = v_0$ with deg $(a) \ge 3$. Then gcd { $\phi^+(w) / w \in N_V(a)$ } = 1.

Let $a = \{v_i / 1 \le i \le n\}$ with deg (a) = 2 (or) 3. Then gcd $\{\phi^+(w) / w \in N_v(a)\} = 1$.

Thus ϕ^+ admits Gaussian neighborhood prime labeling.

Case (ii): Let $H_2 = H_m$, $m \ge 3$.

Let $\{u_0, u_1, u_2, ..., u_m, v_1, v_2, ..., v_m\}$ be the vertices of H_2 .

Define a function $\phi^+: V(H_2) \rightarrow \{\gamma_1, \gamma_2, ..., \gamma_{2m+1}\}$ by

$$\phi^+(u_0) = \gamma_1$$

$$\phi^+(v_i) = \gamma_{i+1}, \quad 1 \le i \le m$$

 $\phi^+(u_i) = \gamma_{m+i+1}, \quad 1 \le i \le m$

Let $a = u_0$ with deg $(a) \ge 3$. Then gcd { $\phi^+(w) / w \in N_v(a)$ } = 1.

Let $a = \{u_i / 1 \le i \le m\}$ with deg (a) = 4. Then gcd $\{\phi^+(w) / w \in N_v(a)\} = 1$.

Thus ϕ^+ admits Gaussian neighborhood prime labeling.

Hence ψ_{GNP} is a Gaussian neighborhood prime decomposition of $H_m(F_n)$.

Therefore the decomposition of helm of fan graph $H_m(F_n)$ is Gaussian neighborhood prime for all m, $n \ge 3$.

Theorem 2.2 The decomposition of helm of wheel graph $H_m(W_n)$ is Gaussian neighborhood prime for all m, $n \ge 3$.

Proof. Let $H_m(W_n)$ be the helm of wheel graph with vertex set

$$V[H_{m}(W_{n})] = \{u_{0}\} \cup \{u_{i}/1 \le i \le m\} \cup \{w_{ij}/1 \le i \le m, 1 \le j \le n\} \cup \{w_{i}/1 \le i \le m\} \text{ and edge set}$$

$$E[H_{m}(W_{n})] = \{u_{0}u_{i}/1 \le i \le m\} \cup \{u_{i}u_{i+1}/1 \le i \le m-1\} \cup \{u_{m}u_{1}\} \cup \{u_{i}w_{i1}/1 \le i \le m\} \cup \{w_{ij}w_{i(j+1)}/1 \le i \le m, 1 \le j \le n\} \cup \{w_{i}w_{ij}/1 \le i \le m, 1 \le j \le n\}.$$

$$Clearly, |V[H_{m}(W_{n})]| = m(n+2) + 1 \text{ and } |E[H_{m}(W_{n})]| = m(2n+3).$$

Let m, n be the positive integers and d be the decomposition number.

Let
$$\psi_{GNP} = \begin{cases} (m+n-d-2) W_n, C_m \& K_{1,m,m} & \text{if } m \equiv 1 \pmod{2}, n = 3, 4, \dots \& d = 1, 2, 3, \dots \\ (m+n-d-2) W_n, C_m \& K_{1,m,m} & \text{if } m \equiv 0 \pmod{2}, n = 3, 4, \dots \& d = 1, 2, 3, \dots \end{cases}$$

The decomposition of helm of wheel graph $H_m(W_n)$ contains a cycle graph C_m , double star graph $K_{1,m,m}$ and wheel graph W_n .

This implies that $\psi_{GNP} \supseteq \{C_m, K_{1,m,m}, W_n, W_n, \dots, W_n(m \text{ times})\}$

That is $|\psi_{GNP}| \ge |C_m| + |K_{1,m,m}| + |W_n| + |W_n| + ... + |W_n| (m times)$

$$\geq |C_{m}| + |K_{1,m,m}| + m|W_{n}|$$

Hence $\pi_{GNP}[H_m(W_n)] \ge m+2.$

We claim that ψ_{GNP} is a Gaussian neighborhood prime decomposition of $H_m(W_n)$.

Let *a* be any vertex of C_m , $K_{1,m,m}$ and W_n .

Case (i): Let $H_1 = C_m, m \ge 3$.

Let $\{v_1, v_2, \dots, v_m\}$ be the vertices of H_1 .

Define a function $\phi^+: V(H_1) \rightarrow \{\gamma_1, \gamma_2, \gamma_3, ..., \gamma_n\}$ by

$$\phi^+(v_i) = \gamma_i \quad 1 \le i \le m$$

Let $a = \{v_i / 1 \le i \le m\}$ with deg (a) = 2. Then gcd $\{\phi^+(w) / w \in N_v(a)\} = 1$.

Thus ϕ^+ admits Gaussian neighborhood prime labeling.

Case (ii): Let $H_2 = K_{1,m,m}, m \ge 3$.

Let $\{u_0, u_1, u_2, ..., u_m, v_1, v_2, ..., v_m\}$ be the vertices of H_2 .

Define a function $\phi^+: V(H_2) \rightarrow \{\gamma_1, \gamma_2, \gamma_3, ..., \gamma_{2m+1}\}$ by

 $\phi^+(u_0) = \gamma_1$

 $\phi^+(u_i) = \gamma_{2i} \quad 1 \le i \le m$

$$\phi^+(v_i) = \gamma_{2i+1}, \quad 1 \le i \le m$$

Let $a = u_0$ with deg $(a) \ge 3$. Then gcd { $\phi^+(w) / w \in N_v(a)$ } = 1.

Let $a = \{u_i / 1 \le i \le m\}$ with deg (a) = 2. Then gcd $\{\phi^+(w) / w \in N_v(a)\} = 1$.

Thus ϕ^+ admits Gaussian neighborhood prime labeling.

Case (iii): Let $H_3 = W_n$, $n \ge 3$.

Let $\{v_0, v_1, v_2, \dots, v_n\}$ be the vertices of H_3 .

Define a function $\phi^+: V(H_3) \rightarrow \{\gamma_1, \gamma_2, \gamma_3, ..., \gamma_{n+1}\}$ by

$$\phi^+(v_0) = \gamma_1$$

$$\phi^+(v_i) = \gamma_{i+1}, \quad 1 \le i \le n$$

Let $a = v_0$ with deg $(a) \ge 3$. Then gcd { $\phi^+(w) / w \in N_v(a)$ } = 1.

Let $a = \{v_i / 1 \le i \le n\}$ with deg (a) = 3. Then gcd $\{\phi^+(w) / w \in N_v(a)\} = 1$.

Thus ϕ^+ admits Gaussian neighborhood prime labeling.

Hence ψ_{GNP} is a Gaussian neighborhood prime decomposition of $H_m(W_n)$.

Therefore the decomposition of helm of fan graph $H_m(W_n)$ is Gaussian neighborhood prime for all m, $n \ge 3$.

Theorem 2.3 The decomposition of the sunflower planar graph SF_n is Gaussian neighborhood prime for all $n \ge 3$.

Proof. Let SF_n be the sunflower planar graph with vertex set

 $V[SF_n] = \{u_0\} \cup \{u_i / 1 \le i \le n\} \cup \{v_i / 1 \le i \le n\}$ and edge set

 $E[SF_n] = \{u_0u_i / 1 \le i \le n \} \cup \{u_iu_{i+1}, /1 \le i \le n-1\} \cup \{u_nu_1\} \cup \{u_iv_i / 1 \le i \le n \} \cup \{v_iu_{i+1} / 1 \le i \le n-1\} \cup \{v_nu_1\}.$ Clearly, $|V[SF_n]| = 2n+1$ and $|E[SF_n]| = 4n$.

Let $\psi_{GNP} = \{ W_n, P_{2n+1} \}$ be a decomposition of SF_n .

Let n be the positive integer and d be the decomposition number.

Then $\Psi_{GNP} = \begin{cases} (n-d-1) W_n & P_{2n+1} & \text{if } n \equiv 1 \pmod{2}, \ d = 1, 3, 5, \cdots \\ (n-d-1) W_n & P_{2n+1} & \text{if } n \equiv 0 \pmod{2}, \ d = 1, 3, 5, \cdots \end{cases}$

The decomposition of sunflower planar graph SF_n contains a wheel graph W_n and a path graph P_{2n+1} . This implies that $\psi_{GNP} \supseteq \{W_n, P_{2n+1}\}$ That is $|\psi_{GNP}| \ge |W_n| + |P_{2n+1}|$

Hence $\pi_{GNP}(SF_n) \ge 2$.

We claim that ψ_{GNP} is a Gaussian neighborhood prime decomposition of SF_n .

Let a be any vertex of W_n and P_{2n+1} .

Case (i): Let $H_1 = W_n$, $n \ge 3$.

Let $\{u_0, u_1, u_2, \dots, u_n\}$ be the vertices of H_1 .

Define a function $\phi^+: V(H_1) \rightarrow \{\gamma_1, \gamma_2, \gamma_3, ..., \gamma_{n+1}\}$ by

$$\phi^+(u_0) = \gamma_1$$

 $\phi^+(u_i) = \gamma_{i+1}, \quad 1 \le i \le n$

Let $a = u_0$ with deg $(a) \ge 3$. Then gcd { $\phi^+(w) / w \in N_v(a)$ } = 1.

Let $a = \{u_i / 1 \le i \le n\}$ with deg (a) = 3. Then gcd $\{\phi^+(w) / w \in N_v(a)\} = 1$.

Thus ϕ^+ admits Gaussian neighborhood prime labeling.

Case (ii): Let $H_2 = P_{2n+1}, n \ge 3$. Let $\{v_1, v_2, v_3, \dots, v_{2n+1}\}$ be the vertices of H_2 . Define a function $\phi^+ : V(H_2) \rightarrow \{\gamma_1, \gamma_2, \dots, \gamma_{2n+1}\}$ by $\phi^+(v_{2i-1}) = \gamma_i, \quad 1 \le i \le n+1$ $\phi^+(v_{2i}) = \gamma_{n+1+i}, \quad 1 \le i \le n$

Let $a = \{v_i / 2 \le i \le 2n\}$ with deg (a) = 2. Then gcd $\{\phi^+(w) / w \in N_V(a)\} = 1$.

Thus ϕ^+ admits Gaussian neighborhood prime labeling.

Hence ψ_{GNP} is a Gaussian neighborhood prime decomposition of SF_n .

Therefore the decomposition of sunflower planar graph SF_n is Gaussian neighborhood prime for all $n \ge 3$.

3. Conclusion

In this paper, we investigate Gaussian neighborhood prime decomposition of helm of fan graph $H_m(F_n)$, helm of wheel graph $H_m(W_n)$, sunflower planar graph SF_n . In future we will investigate Gaussian neighborhood prime de-composition of graphs using different labelings.

References

- [1] Arumugam, I, Sahul Hamid and V.M.Abraham," Decomposition of Graphs Paths and Cycles", Journal of Discrete Mathematics,2013.
- [2] Bondy. J.A, and Murthy, USR, 1976, Graph Theory with Applications, The Macmillan Press Ltd.
- [3] Harary. F, 1988, Graph Theory, Narosa publishing House, New Delhi.
- [4] Joseph A Gallian, A dynamic survey of Graph Labeling, The Electronic Journal of Combinatorics, 2018.
- [5] Patel. S.k and Shrimali. N.P, "Neighborhood Prime Labeling on Graphs", International Journal of Mathematics and Soft Computing, Vol. 5,2015.

- [6] Rajesh Kumar, T.J. and Mathew Varkey, T.K, 2018, Gaussian neighborhood prime labeling of some classes of graphs and cycles, Annals of Pure and Applied Mathematics, Vol. 16(1), pp. 133–140.
- [7] Rajeshkumar. T.J and Mathew Varkey. T.K, 2016, A note on total neighborhood prime labeling, International Journal Of Mathematics Combinations Vol. 4, pp. 161-167.
- [8] Rajeev Gandhi.S, 2022, Decomposition of various graphs in to prime graphs, Mathematical Statistician and Engineering Applications, Vol. 71, No.4, pp. 10500– 10514.
- [9] Rokad.A.H, 2019, product cordial labeling of double wheel and double fan related graphs, Kragujevac Journal of Mathematics, Volume 43(1), Pages 7–13.
- [10] Steven klee, Hunter Lehmann and Andrew Park, 2015, Prime labeling of families of trees with Gaussian integers.